1. Base \(10\) , Base \(3\) …
In Base \(10\) , fractional “building blocks”, denominators are powers of \(10\) :
\[\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}... \]
In Base \(3\) , similarly, denominators are powers of \(3\) :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27}... \]
2. What is \(\frac{1}{5}\) in Base \(10\) ?
In base \(10\) :
\[\frac{1}{5} = 0.d_1d_2d_3...\] equivalent to: \[\frac{1}{5} = \frac{d_1}{10^{1}}+\frac{d_2}{10^{2}}+\frac{d_3}{10^{3}}...\] \[\frac{1}{5} = \frac{d_1}{10}+\frac{d_2}{100}+\frac{d_3}{1000}...\]
or The fraction \(f\) :
\[f = \frac{d_1}{10}+\frac{d_2}{100}+\frac{d_3}{1000}...\]
Find \(d1, d2, d3...\)
Multiply by the base \(10\) :
\[f = {d_1} +\frac{d_2}{10}+\frac{d_3}{100}...\]
This is a new number:
with \(d_1\) as the integer [number before decimal]
with \(d_2d_3d_4...\) as the fractional components
\[f = d_1.d_2d_3d_4...\]
Back to the example, \(\frac{1}{5}\) in Base \(10\) :
\[\frac{1}{5} = \frac{d_1}{10}+\frac{d_2}{100}+\frac{d_3}{1000}+...\]
Multiple by base, or \(10\) :
\[10\times\frac{1}{5} = 10\times\frac{d_1}{10}+10\times\frac{d_2}{100}+10\times\frac{d_3}{1000}+...\]
\[2.0 = d_1+\frac{d_2}{10}+\frac{d_3}{100}+...\]
Since d1, d2… are whole integers
\[\therefore 2.0 = \frac{d_1}{10^{0}} =d_1\] \[0.0=\frac{d_2}{10^{1}}+\frac{d_3}{10^{2}}+...\frac{d_n}{10^{n-1}}\]
3. Python Script: Calculate \(\frac{1}{5}\) in base \(2\)
base_2 = 2
f = 1 / 5 # fraction
fraction_result = []
fraction_chr = ""
for i in range (1 ,13 ):
f= f* 2
if f>= 1 :
f-= 1
fraction_result.append('1' ) # list
fraction_chr+= '1' # string
next
else :
fraction_result.append('0' )
fraction_chr+= '0'
print (i, f)
print (fraction_result)
print (fraction_chr)
1 0.4
2 0.8
3 0.6000000000000001
4 0.20000000000000018
5 0.40000000000000036
6 0.8000000000000007
7 0.6000000000000014
8 0.20000000000000284
9 0.4000000000000057
10 0.8000000000000114
11 0.6000000000000227
12 0.20000000000004547
['0', '0', '1', '1', '0', '0', '1', '1', '0', '0', '1', '1']
001100110011
4. Decimal Fractions
In decimal, base \(10\) , decimal point is used:
\[
\begin{array}{rcl}
0.2 & = & \Bigg[2\times\frac{1}{10^{1}}\Bigg] \\
0.25 & = & \Bigg[2\times\frac{1}{10^{1}}\Bigg] + \Bigg[5\times\frac{1}{10^{2}}\Bigg] \\
0.123 & = & \Bigg[1\times\frac{1}{10^{1}}\Bigg] + \Bigg[2\times\frac{1}{10^{2}}\Bigg] + \Bigg[3\times\frac{1}{10^{2}}\Bigg]\\
\end{array}
\]
5. Binary Fractions
In binary, base \(2\) , binary point is used: \[
0.d_1d_2d_3d_4 =
\Bigg[\frac{d_1}{2^{1}}\Bigg]
+ \Bigg[\frac{d_2}{2^{2}}\Bigg]
+ \Bigg[\frac{d_3}{2^{3}}\Bigg] + ...\]
\[\begin{array}{rcl}
0.1 & = & \Bigg[1\times\frac{1}{2^{1}}\Bigg] &&&&&&& = & \Bigg[0.500\Bigg] \\
\\
0.01 & = & \Bigg[0\times\frac{1}{2^{1}}\Bigg] &+& \Bigg[1\times\frac{1}{2^{2}}\Bigg] \\
& = & \Bigg[0\Bigg] &+& \Bigg[0.25\Bigg] &&&&&=& \Bigg[0.2500\Bigg] \\
\\
0.11 & = & \Bigg[0\times\frac{1}{2^{1}}\Bigg] &+& \Bigg[1\times\frac{1}{2^{2}}\Bigg] \\
& = & \Bigg[0.5\Bigg] &+& \Bigg[0.25\Bigg]&&&&&=& \Bigg[0.7500\Bigg] \\
\\
0.001 & = & \Bigg[0\times\frac{1}{2^{1}}\Bigg] &+& \Bigg[0\times\frac{1}{2^{2}}\Bigg]
&+& \Bigg[1\times\frac{1}{2^{3}}\Bigg] &=&\Bigg[1\times\frac{1}{8}\Bigg]
% \\
% & = & \Bigg[0\Bigg] &+& \Bigg[0\Bigg]
% &+& \Bigg[0.125\Bigg]
&=& \Bigg[0.1250\Bigg] \\
\\
0.011 & = & \Bigg[0\times\frac{1}{2^{1}}\Bigg] &+& \Bigg[1\times\frac{1}{2^{2}}\Bigg] &+& \Bigg[1\times\frac{1}{2^{3}}\Bigg] \\
& = & \Bigg[0\Bigg] &+& \Bigg[1\times\frac{1}{4}\Bigg] &+& \Bigg[1\times\frac{1}{8}\Bigg] \\
& = & \Bigg[0\Bigg] &+& \Bigg[0.25\Bigg] &+& \Bigg[0.125\Bigg]&&&=& \Bigg[0.3750\Bigg] \\
\\
0.111 & = & \Bigg[1\times\frac{1}{2^{1}}\Bigg] &+& \Bigg[1\times\frac{1}{2^{2}}\Bigg] &+& \Bigg[1\times\frac{1}{2^{3}}\Bigg] \\
& = & \Bigg[1\times\frac{1}{2}\Bigg] &+& \Bigg[1\times\frac{1}{4}\Bigg] &+& \Bigg[1\times\frac{1}{8}\Bigg] \\
& = & \Bigg[0.5\Bigg] &+& \Bigg[0.25\Bigg] &+& \Bigg[0.125\Bigg]&&&=& \Bigg[0.875\Bigg] \\
\\
0.1111 & = & \Bigg[0.875\Bigg] &+& \Bigg[1\times\frac{1}{16}\Bigg] &=& \Bigg[0.875\Bigg]&+&\Bigg[0.0625\Bigg]&=&\Bigg[0.9375\Bigg]
\end{array}\]