1. Question 1: x = 3 + 4 + 5
Task:
- Given a set of expressions that have no parentheses.
- Using the operator precedence and associativity rules:
- add parentheses to each expression
- to make it clear how the compiler will evaluate the expression.
Reference:
2. Tp Solution
2.1 Operator: Precedence Level & Associativity
Operator ‘\(+\)’:
- Precedence: \([3]\)
- Associativity: \([L \to R]\)
Operator ‘\(=\)’:
- Precedence: \([16]\)
- Associativity: \([L \leftarrow R]\)
2.2 Workout
\[x = 3 + 4 + 5;\] \[x_{16} = {}_{16}3_{3} + {}_{3}4_{3} + {3}_5\] \[x_{16} = {}_{16}(3_{3} + {}_{3}4)_{3} + {3}_5\] \[x_{16} = {}_{16}(3+4)_{3} + {}_{3}5\] \[x_{16} = {}_{16}((3+4)_{3} + {}_{3}5)\] \[x_{16} = {}_{16}((3+4)+5)\] \[x_{16} = {}_{16}((3+4)+5)\] \[(x=((3+4)+5))\]